Interactive Exploration of Nonlinear Ray
Casting with Rust and wgpu

Niklas Korz

June 21, 2024 RustFest Ziirich

About Me

« MSc graduate (Heidelberg University)

Co-founder and tech lead at alugha.com

Meetup organizer: “Nix Your Bugs & Rust Your Engines”
Website: https://korz.dev

Mastodon: @niklaskorz@rheinneckar.social

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz

https://alugha.com
https://korz.dev
https://rheinneckar.social/@niklaskorz

Project Origins

Software project during Master of Science studies at Heidelberg University

Duration: April 2021 - November 2021

Visual Computing Group

VISUAL
COMPUTING
GR@O®UP

HEIDELBERG UNIVERSITY

Supervisor Prof. Dr. Filip Sadlo

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 3

Exploring and understanding visual phenomena in nonlinear scenes

Mirage in a desert (public domain) Simulated black hole by Alain Riazuelo (CC-BY-SA

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz

E. Groller. “Nonlinear Ray Tracing: Visualizing Strange Worlds”
The Visual Computer 11:5, 1995, pp. 263-274.

 Rendering of nonlinear scenes
» Gravitation centers and lines

» Chaotic dynamic systems
o Algorithms:

» Uniform subdivision

» Hierarchical bounding volume structure
« Not interactive

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 5

Y. Zhao et al. “Visual Simulation of Heat Shimmering and Mirage”
IEEE Transactions on Visualization and Computer Graphics 13:1, 2007, pp. 179-189.

« Physically-based framework for
simulating visual effects of heated air

« Rendering through ray tracing on GPU

« Iterations using small step size inside heat

volume

« Air refraction computed from Snell‘s law

« No alternative visualisation of ray paths

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 6

C++? JavaScript?

OpenGL? Vulkan?

June 21,2024 teractive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 7

4

sPpU

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 8

Web app Web app Web app
Iy A 4
v A J h 4
WebGPU Logical Logical Logical
device device device
Adapter
Underlying .
system Native GPU API
Driver
GPU

by Mozilla Contributors (CC-BY-SA)

June 21, 2024

« New graphics standard by W3C
 Successor to WebGL
 Based on family of modern graphics APIs
» Explicit management of state and
resources
» No global state machine
» But: provides abstractions for safer and
easier usage

« Supports compute shaders!

Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 9

WebGPU Shading Language

@vertex
fn vert_main() -> @builtin(position) vec4<f32> { * NeWteXtua“anguage

return vec4<f32>(0.0, 0.0, 0.0, 1.0); » Considers target limitations
} » Focus on validation
efragment « Multiple targets
fn frag_main(» SPIR-V for Vulkan

@builtin(position) coord_in: vec4<f32>
) —> @location(0®) vec4<f32> {
return vec4<f32>(coord_in.x, coord_in.y, » MSL for Metal
0.0, 1.0);

» HLSL for DirectX 12

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 10

The Beginning

 Simple linear ray caster as foundation
« Execution: WebGPU compute shaders
» Cast rays from camera through every pixel
» Colors determined by intersection of rays
with objects in the scene

» Moller-Trumbore intersection algorithm

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 11

Vertex/index buffer

The Beginning l A

1 2
l 0
Vertex shader 1-4

 Simple linear ray caster as foundation

« Problem: can’t write screen buffer from compute shaders ! :
» Presentation through proxy geometry — <4
» Vertex shader forwards proxy geometry as-is S %7
» Fragment shader reads colors from storage texture l HEE

Rasterization EE#

l T

. . . Fragment shader EE#
Graphics Pipeline o .

by Alexander Overvoorde l
(CC— BY—SA) Color blending

l

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz Framebuffer 12

Nonlinear Rays

Goal: evaluate path of ray in vector field

Iterative approach:
» Subdivision of ray into segments
» 4th order Runge-Kutta integration inside

segment

Intersection tests between positions

Early ray termination if intersection found

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 13

Lighting

« Blinn-Phong illumination
» Inaccurate but useful
» Gives a sense of incoming ray direction
« Camera considered as “light source”
» Incoming light direction = outgoing direction

» Simplification for context of nonlinear rays

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 14

2D Wavefronts

Ray cast view hard to understand by itself

Reference view supports comprehension

First idea: 2D wavefronts

Works if rays mostly stay on same plane

Unsuitable for other fields

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 15

3D Wavefronts
» 3D reference view with camera controls A
 Arrow glyphs placed along wavefronts T

Rays sampled in compute shader

Single mesh drawn with instancing
» One vertex shader run per sample (position, orientation)

» Applied as matrix transformation to glyph’s vertices

But: no connection between samples of same ray

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 16

3D Outline Mesh

 Multicolored 3D mesh constructed
» Sampled from eight rays on outline of camera
» Different color per ray for distinction
« Rendered with indexed drawing
» Index buffer precomputed once
» Samples written into fixed-size vertex buffer

« Wireframe mode emphasizes sampled rays

June 21,2024

Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz

17

Simulation of Mirages

 Continuous refraction in a medium (e.g., air)
« Approximated through Runge-Kutta
» Refraction between previous and current point
» Refraction index computed from air temperature
 Spherical and plane heat source
« Interpolate core and environmental temperature

» Linear heat spread (unrealistic but easy)

» Sigmoid heat spread (smoother)

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 18

Ray Neighborhood Outline

3D outline mesh may not show interesting parts of field

User wants to inspect points of interest

Sample rays around point chosen by user
» Position passed to compute shader to select rays
» Reuses outline mesh mechanism

» Index buffer unchanged

Shows which part of the scene is seen in mirage

Emphasizes regional distortions

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 19

Lyapunov Exponents Overlay

« Emphasize areas of different behavior

» Divergence of rays around a point

» Local gradients from central difference
 Additional compute shader for overlay

» Ray casting first to get end positions

» Scaled exponents are drawn on top

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 20

Final Application

« Rendered linearly in reference view (left)
« Rendered non-linearly in main view (right)
» Optional overlay for visualization
of Lyapunov exponents
» Mouse click on pixels to visualize ray

neighborhood in reference view

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 21

Final Application

o List of editable predefined functions as an entry point
« Functions can incorporate multiple parameters:

» Previous and current ray position o Glli—
O 50

» Initial and current ray velocity O 1o

Mirage (spherical) ¥

» Time passed since creation of ray let t_env = 15.0;

let t_src 200.0;
let max_dist = 0.25;
let center = vec3<f32>(-0.5, 0.5, -0.5);

let center_dest = p - center;

let normal = normalize(center_dest);

let dist_in = length(p_prev - center);

let dist_out = length(center_dest);

let part_in = clamp(0.0, 1.0, dist_in / max_dist);

let part_out = clamp(0.0, 1.0, dist_out / max_dist);

let t_in = part_in * t_env + (1.0 - part_in) * t_src;
let t_out = part_out * t_env + (1.0 - part_out) * t_src;

return refraction(t_in, t_out, v, normal);

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 22

Room for Improvement

« More complex scenes

» Textures
 Performance improvements through acceleration structures

o Larger library of predefined functions and helpers as foundation for further

experiments

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 23

Questions?

 Repository: https://github.com/niklaskorz/linon
« Demo (Firefox Nightly & Chrome): https://niklaskorz.github.io/linon/
« Open Source (MIT license)
« Contact meon...
» Email: contact@korz.dev
» Mastodon: @niklaskorz@rheinneckar.social

» Matrix

June 21,2024 Interactive Exploration of Nonlinear Ray Casting with Rust and wgpu - Niklas Korz 24

https://github.com/niklaskorz/linon
https://niklaskorz.github.io/linon/
mailto:contact@korz.dev
https://rheinneckar.social/@niklaskorz

